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1. Introduction

The AdS/CFT correspondence has proved to be a useful tool in understanding various

aspects of strongly coupled gauge theories. In this work we focus on some developments

which allow one to relate the hydrodynamic regime of the gauge theory to black hole

solutions in asymptotically AdS5 backgrounds. The first work in this direction was carried

out in [1] where the ratio of the shear viscosity η to the entropy density s of the N = 4

SU(N) supersymmetric Yang-Mills theory was computed via the Kubo formula. It was

found that at strong t’ Hooft coupling and in the large N limit

η

s
=

1

4π
. (1.1)

This value seems to be universal, and applies to a large class of theories which have a

holographic dual [2 – 7], see [8] for a review. Finite N corrections to (1.1) were considered

in [9, 10, 6, 11 – 13, 7]. The fact that the black hole background allows to compute hy-

drodynamic transport coefficients might be an indication that black holes capture the full

hydrodynamic behavior of the boundary theory. In [14] an important step in this direction

was made: it was shown how to map a hydrodynamic expansion of the boundary theory

to a gradient expansion in the bulk. In principle, this technique allows to compute all the

transport coefficients of conformal fluid dynamics (for gauge theories with an AdS dual).

Those coefficients which are accessible via linear response theory can also be computed
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using the Kubo formula. For instance, in [15, 16] some of the second order transport

coefficients were computed this way.

The method of [14] has been shown to be rather robust and can be applied to black

holes in various dimensions [17, 18], and to situations where the black hole metric couples

to external fields such as the dilaton [19], implying forced fluid dynamics in the boundary

theory. The method involves extending known asymptotically AdS5 black hole solutions

by allowing various parameters of the solution to vary with the space-time coordinates.

In this work we consider charged AdS5 black holes. We show that the known Reissner-

Nordström charged black hole solutions can be extended so that their charge, mass and

certain boost parameters are slowly varying in the coordinates transverse to the AdS radial

direction (henceforth, the transverse coordinates). In the dual picture, this corresponds to

a hydrodynamic limit of the theory where the charged current, energy density, and velocity

fields are slowly varying.

In detail, the bulk theory we have in mind is Einstein-Maxwell gravity with a negative

cosmological constant and a Chern-Simons term. This is a consistent truncation of IIB

supergravity on AdS5 × S5 and is dual to the strongly coupled, planar limit of the N = 4

SU(N) supersymmetric-Yang-Mills theory on R3,1 with a non vanishing chemical poten-

tial [20, 21]. We will sometimes call this SYM or N = 4 theory for short. More precisely,

it is dual to a subsector of the N = 4 theory in which a single conserved U(1) current

is excited. This is the Noether current associated with the diagonal U(1) of the maximal

Abelian subgroup of the SO(6) R-symmetry group and it is dual to the bulk U(1) gauge

field. More details on this truncation can be found in [21].

Previous computations of the thermodynamic properties of the SYM fluid with a finite

chemical potential can be found in [21, 20, 22] where the energy density and equation of

state have been analyzed. The shear viscosity of this fluid has been computed via the

Kubo formula in [5, 23, 24], in [5] its heat conductivity was analyzed and in [16] some of

the dispersion relations were computed to second order in a small momentum expansion.

In [43] one can find a related analysis dealing with M2-branes. In this work, we extend

these results and compute all second order, linear and non-linear, transport coefficients.

We also find a first order contribution to the R-charge current which was not considered

in the literature so far.

The rest of this paper is organized as follows: in the subsequent section we discuss

conformal fluid hydrodynamics, set the notation for the rest of this paper and summarize

our field theory results. In section 3 we review the Reissner-Nordström AdS5 black hole

solution and rederive the thermodynamic properties of the associated boundary theory.

Our main computation, extending the Reissner-Nordström black hole solution to one with

a slowly varying charge, mass and boost parameters is done in section 4. There, we also

explain how to compute the associated transport coefficients. We end with a discussion in

section 5. Some of the details of the analysis are relegated to an appendix.

Towards the end of this work we learned about [25] which has some overlap with the

material presented here.
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2. Conformal fluid dynamics (and summary)

Consider the energy momentum tensor 〈T µν〉 and a conserved current 〈Jµ〉 of a conformal

theory in R3,1. In the absence of anomalies one has

∂µ〈T µν〉 = 0 ∂µ〈Jµ〉 = 0, (2.1)

and the energy momentum tensor is traceless

〈T µ
µ 〉 = 0. (2.2)

In the hydrodynamic approximation, where the mean free path of the theory ℓmfp is smaller

than the typical inverse momentum scale, both 〈Tµν〉 and 〈Jµ〉 can be expressed in terms of

hydrodynamic fields. These are given by the energy density ǫ, the charge density ρ and the

velocity field uµ (which is normalized such that uµuµ = −1). In the Landau frame, which we

use in the rest of this work, all the hydrodynamic fields are defined relative to the rest frame

of a fluid element. The energy density is given by the time-time component of the energy

momentum tensor in the rest frame of the fluid element, the charge density is given by the

zero component, J0, of the current in the rest frame of a fluid element, and the velocity

of a fluid element is defined by the boost parameter needed to bring that fluid element to

its rest frame. In general, one can exchange the energy density and charge density with

the temperature T and chemical potential µ, though their explicit functional relation will

depend on the specific details of the theory. For the N = 4 theory these relations were

computed in [21, 22, 5] and are given in (2.19a) and (2.19b) together with (2.20). In, for

instance, [26] one can find such relations when flavored matter is introduced.

Working in the hydrodynamic regime, where the momentum scale is smaller than the

inverse mean free path, implies that the velocity field, energy density and charge density

vary slowly with the space-time coordinates, i.e. their derivatives are small. For example,

one has

|∂ǫ| ≪ ǫ/ℓmfp . (2.3)

In this case, we can expand the energy momentum tensor and current in gradients of the

hydrodynamic variables. At zero order in such a gradient expansion (meaning a fluid with

constant energy density, charge density and moving at a fixed velocity), the only current

which can be constructed from uµ, ǫ and ρ will be proportional to uµ. The only symmetric

traceless tensor one can construct must be proportional to ηµν + uµuν . Thus, to leading

order in gradients,

〈Tµν〉 =
ǫ

3
(4uµuν + ηµν) , 〈Jν〉 = ρuν . (2.4)

We denote higher order gradient corrections to the energy momentum tensor and current

by Πµν and Υµ,

〈Tµν〉 =
ǫ

3
(4uµuν + ηµν) + Πµν , 〈Jν〉 = ρuν + Υν . (2.5)

Working in the Landau frame, we find that uνΥν = 0 and uνΠµν = 0.

– 3 –
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Following [15] it is possible to construct the form of the corrections Υµ and Πµν , order

by order in a derivative expansion. Let us start by evaluating all possible contributions to

Υν at first order in a gradient expansion. Overall, there are four possible vectors that can

be constructed from ǫ, ρ and uν which are orthogonal to the velocity field and have one

derivative. These are

V 1
µ = P ν

µ ∂νǫ V 2
µ = P ν

µ ∂νρ V 3
µ = P ν

µ uα∂αuν

Ṽ 1
µ = ℓµ , (2.6)

where we have defined

ℓµ = ǫ ρστ
µ uρ∂σuτ , (2.7)

and Pµν projects onto the space orthogonal to the velocity field,

Pµν = uµuν + ηµν . (2.8)

ℓµ reduces to the curl of the velocity in the local rest frame. In the following, we will always

adorn vectors or tensors involving ℓµ with a tilde.

Since energy conservation (2.1) implies that

V 1
ν = −4ǫV 3

ν , (2.9)

we can construct the leading derivative terms in Υν by using combinations of only V 1
ν ,

V 2
ν and Ṽ 1

ν . Further, recall that in a conformal theory, a conserved current Jµ should

transform homogeneously under Weyl transformations (we use the conventions of [15] where

ηµν → e−2ωηµν). Ṽ 1
µ is Weyl invariant while V 1

ν and V 2
ν transform inhomogeneously with

the inhomogeneous terms given by

δV 1
µ = e4ωP ν

µ 4ǫ∂νω , δV 2
µ = e3ωP ν

µ 3ρ∂νω. (2.10)

However, the linear combination

P ν
µ ∂ν

ǫ3

ρ4
(2.11)

does transform homogeneously. One could have guessed this by noting that the weight of

ǫ under Weyl rescalings is 4 and the weight of ρ under Weyl rescalings is 3, so the only

Weyl invariant combination is ǫ3/ρ4. Switching from energy density and charge density to

temperature T and chemical potential µ, we find that the most general form of Υν at first

order in a derivative expansion is

Υν = −κP α
ν ∂α

µ

T
+ Ωℓν + O(∂2) , (2.12)

where κ = κ(µ, T ) and Ω = Ω(µ, T ) are undetermined first order transport coefficients

whose explicit form depends on the theory. Our value for κ and Ω can be found in (2.21b)

and (2.21c)

In principle, the transport coefficient κ in (2.12) can also be calculated via linear

response theory. In [5] it has been calculated for a different sector of the N = 4 theory in

– 4 –
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which a different U(1) subgroup of the R-charge current is excited in addition to some of

the scalar fields. The coefficient Ω in (2.12) has been inaccessible so far.1

In [28] a different type of argument has been used to construct the first order terms in

Υν : an entropy current was constructed by hand to have a positive semi-definite divergence

and from it, the first order corrections to Υν were inferred. The Υν constructed in [28]

differs from the one in (2.12) by the ℓν term. It would be interesting to find a corrected

form of the entropy current which allows for the ℓν term, perhaps along the lines of [19].

Second order contributions to Υν can be derived using the same arguments as those

leading to (2.12). One may construct all possible Weyl-covariant vectors composed of two

derivatives which are orthogonal to the velocity field. See for example [29 – 33, 19, 15] for

a more elaborate discussion on the construction of Weyl invariant quantities. In this work

five such terms will be relevant,2

Ξ(1)
ν = σ α

ν ∂α
µ

T
, Ξ(2)

ν = ω α
ν ∂α

µ

T
, Ξ(3)

ν = P β
ν∂α

(
σα

βb−3
)

, Ξ(4)
ν = P β

ν∂α

(
ωα

βb−1
)

Ξ̃(1)
ν = σναℓα , (2.13)

where we have defined

σµν = 2∂〈µuν〉 , ωµν =
1

2
P λ

µ P σ
ν (∂λuσ − ∂σuλ) (2.14)

and angular brackets denote a traceless projection onto the space orthogonal to uµ so that

A〈µν〉 = P λ
µ P σ

ν

1

2
(Aλσ + Aσλ) − 1

d − 1
PµνP λσAλσ (2.15)

satisfies ηµνA〈µν〉 = 0 and uµA〈µν〉 = 0. For the R-charge current of the theory at hand,

the only non vanishing second order transport coefficients are those associated with the

terms in (2.13). Thus, up to second order in a derivative expansion, we may write

Υν = −κPα
ν ∂α

µ

T
+ Ωℓν + ξ1Ξ

(1)
ν + ξ2Ξ

(2)
ν + ξ3Ξ

(3)
ν + ξ4Ξ

(4)
ν + ξ̃1Ξ̃

(1)
ν . (2.16)

The decomposition of Πµν into Weyl invariant tensors may be carried out in a similar

manner [15]. For the N = 4 theory the energy momentum tensor takes the form

Πµν = −η σµν + ητπ Σ(0)
µν + λ1 Σ(1)

µν + λ2 Σ(2)
µν + λ3 Σ(3)

µν + λ4 Σ(4)
µν + λ5 Σ(5)

µν + λ̃1 Σ̃(1)
µν + λ̃2 Σ̃(2)

µν ,

(2.17)

where

Σ(0)
αν = 〈u

λ∂λσαν〉 +
1

3
σαν∂λuλ ,

Σ(1)
αν = σ〈αλσλ

ν〉 , Σ(2)
αν = σ〈αλωλ

ν〉 , Σ(3)
αν = ω〈αλωλ

ν〉 , Σ(4)
αν = ∂〈α

µ

T
∂ν〉

µ

T
,

Σ(5)
αν = ∂〈α∂ν〉

µ

T
+ 2uρ∂ρu〈α∂ν〉

µ

T
− 2

3
∂βuβu〈α∂ν〉

µ

T
,

Σ̃(1)
αν = ∂〈α

µ

T
ℓν〉 , Σ̃(2)

αν = ℓ〈αuγ∂γuν〉 +
1

2
∂〈αℓν〉 . (2.18)

1From the bulk point of view, it is the Chern-Simons term in the action (cf. (3.1) below) that is responsible

for having Ω 6= 0.
2Note that all the terms in (2.13) are of order two in the derivative expansion. Their superscripts are

simply a means to enumerate them.
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In the rest of this work, we use the AdS/CFT correspondence to compute the various

transport coefficients associated with the energy momentum tensor and R-charge current

of the N = 4 theory.3 sections 3 and 4 describe this computation in detail and the results

are summarized below.

The energy density and charge density are given by

ǫ =
3N2

8π2b4
(2.19a)

ρ =
µr2

+N2

4π2
, (2.19b)

where N is the rank of the gauge group and

r+ =
πT

2

(
1 +

√
1 +

2

3

µ2

π2T 2

)
, (2.20a)

b−4 =
π4T 4

24

(√
1 +

2

3

µ2

π2T 2
+ 1

)3(
3

√
1 +

2

3

µ2

π2T 2
− 1

)
. (2.20b)

Later we will also need

r2
− =

1

2
r2
+


−1 +

√√√√√9 − 8

1
2

(
1 +

√
1 + 2µ2

3π2T 2

)


 . (2.20c)

The first order transport coefficients are given by

η

s
=

1

4π
(2.21a)

κ

χ
=

1

2
r7
+Tb8 (2.21b)

Ω

χ
=

µ2r4
+b4

2
√

3π2T 2
, (2.21c)

where s is the entropy density and χ is the susceptibility,

s =
1

3

∂ǫ

∂T
=

N2r3
+

2π
, χ =

∂ρ

∂µ

∣∣∣
µ=0

=
1

4
N2T 2. (2.22)

3In practice our results can be generalized to any CFT whose dual can be truncated to Einstein-Maxwell

theory on AdS5 with a Chern-Simons term. The only difference between the transport coefficients of that

CFT and the corresponding ones in the N = 4 theory is an overall multiplicative factor of order unity

associated with the volume of the compact manifold.

– 6 –
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The thirteen second order transport coefficients are

ητπ

c
=

1 + µ2

6r2
+

36π2
+

1 + µ2

6r2
+

72π2r2
+b4

(
2r2

− + r2
+

) ln

(
r2
+ − r2

−
r2
− + 2r2

+

)
(2.23a)

λ1

c
=

1

72π2

(
1 +

µ2

6r2
+

)
(2.23b)

λ2

c
= 2




ητπ

c
−

(
1 + µ2

6r2
+

)

36π2


 (2.23c)

λ3

c
= −µ2b4r2

+

27π2

(
1 +

µ2

6r2
+

)
(2.23d)

λ4

c
=

−1 + 3 ln(2)

216π4

(
1 + O

(µ

T

))
(2.23e)

λ5

c
= −µb8r4

+T 3

216
(2.23f)

λ̃1

c
= 0 (2.23g)

λ̃2

c
=

r+µ3b4

54
√

3π2

(
1 +

µ2

6r2
+

)
(2.23h)

and

ξ1

c
=

ln(2)

72π4T

(
1 + O

(µ

T

))
(2.23i)

ξ2

c
=

T 3b12

144

(
r8
− + 2r6

−r2
+ − r4

−r4
+ − 2r2

−r6
+ + 4r8

+

)
(2.23j)

ξ3

c
=

µb7r2
+

48π2

(
1 +

µ2

6r2
+

)
(2.23k)

ξ4

c
=

µ3r4
+b9

108π2

(
1 +

µ2

6r2
+

)
(2.23l)

ξ̃1

c
= − µ2r5

+b8

72
√

3π2

(
1 +

µ2

6r2
+

)
, (2.23m)

where we defined

c =
∂2ǫ

∂T 2
=

9N2r2
+

2
(
1 + µ2

6r2
+

) . (2.24)

Strictly speaking, all our expressions for the transport coefficients are valid when µ/T

is not too large. In terms of the gravity dual from which these coefficients were obtained,

this implies that the black hole is not close to extremality. For brevity, we have omitted

the somewhat long expressions for λ4 and ξ1 and included only their leading contribution

when expanded in a small µ/T expansion. The interested reader is referred to appendix B

for the full expressions. A discussion of these results can be found in section 5. We mention

here that the µ → 0 limit of τπ, λ1, λ2 and λ3 coincides with the computation of [15, 14, 16]

for the µ = 0 case. In [16] the dispersion relations for the current were computed via the

Kubo formula and compared to the Israel-Stewart theory.

– 7 –
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3. Setup

In the previous section we have explained how one can define the hydrodynamic transport

coefficients of a conformal theory from the form of the energy momentum tensor and

current. In what follows we explain how these transport coefficients can be computed from

the bulk dual of the gauge theory.

Our starting point is the five dimensional action of Einstein-Maxwell theory

S = − 1

16πG5

∫ [√−g

(
R + 12 − 1

4
F 2

)
− 1

12
√

3
ǫMNOPQAMFNOFPQ

]
d5x . (3.1)

The metric

ds2 = −r2f(r)uµuνdxµdxν + r2Pµνdxµdxν − 2uµdxµdr (3.2)

with uµ a fixed four vector satisfying uµuµ = −1,

f(r) = 1 +
Q2

r6
− 1

b4r4
(3.3)

and Pµν as in (2.8), together with the gauge field

Ar = 0 , Aµ = −
√

3Q

r2
uµ (3.4)

are solutions to the Einstein-Maxwell equations

RMN + 4gMN =
1

2
FMKFN

K − 1

12
gMNF 2 ,

∂N (
√−gFNM ) =

1

4
√

3
ǫMNOPQFNOFPQ (3.5)

derived from (3.1).4 In what follows, Greek indices run over the boundary coordinates

µ = 0, . . . , 3 while Roman indices run over the bulk coordinates N = 0, . . . , 4.

The metric (3.2) is nothing but a boosted version of the charged black brane solution

expressed in the Eddington-Finkelstein coordinate system. We would like to extend the

solution (3.2) and (3.4) by allowing uµ, Q and b to vary slowly with the space-time co-

ordinates. It is a simple exercise to check that (3.2) and (3.4) are no longer solutions to

the Einstein-Maxwell equations (3.5) once the boost parameters, charge, and mass of the

black hole are allowed to vary. Thus, we need to correct the metric (3.2) and (3.4) to take

into account the change in uµ, b and Q. We will do this order by order in a derivative

expansion. To set the stage for our perturbative expansion we decompose our metric and

gauge field into scalars, vectors and tensors with respect to the local velocity field of the

fluid,

ds2 = r2k(r)uµuνdxµdxν + r2h(r)Pµνdxµdxν + r2πµν(r)dxµdxν

+ r2jσ(r)
(
P σ

µ uν + P σ
ν uµ

)
dxµdxν − 2S(r)uµdxµdr

≡ r2gµνdxµdxν − 2S(r)uµdxµdr , (3.6)

4Note that we do not require the gauge field to vanish at the future horizon and therefore it is likely

that it diverges at the past horizon. In fact, it is likely that the whole perturbative solution diverges at

the past horizon because generic solutions of viscous fluid dynamics are not expected to be regular in the

infinite past. We thank A. Karch, D. Son, and especially R. Loganayagam for clarifying this point.
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and

Ar = 0 , Aµ = aν(r)P
ν
µ + c(r)uµ . (3.7)

We point out that the various functions k(r), h(r), etc. are not only functions of the radial

coordinate r but could also depend, in principle, on the charge, Q(xα), the mass parameter

b(xα) and the velocity field uµ(xα), or on their derivatives. So k(r), h(r), . . . implicitly

depend on the transverse coordinates. We have chosen an axial gauge for the gauge field,

Ar = 0, and set gµr ∝ uµ with grr = 0. There is one extra gauge degree of freedom which

we will fix shortly. Our goal is to compute the functions k, h, πµν , jα, S, aν and c order

by order in a derivative expansion of Q(xα), b(xα) and uµ(xα). Using a superscript (n) to

denote the n’th order contribution to such an expansion, we can rewrite (3.2) and (3.4) as

k(0)(r) = −f(r) , S(0)(r) = 1 , h(0)(r) = 1 ,

j(0)
µ (r) = 0 , π(0)

µν (r) = 0 , (3.8)

c(0)(r) = −
√

3Q

r2
, a(0)

µ (r) = 0 .

A computation of the various functions k(r), h(r), . . . is carried out in section 4. Once

these are obtained, we can compute the energy momentum tensor 〈Tµν〉 and R-charged

current 〈Jµ〉 of the boundary theory using the standard AdS/CFT dictionary [34 – 39]

adopted to Eddington-Finkelstein coordinates [18]. In the Landau gauge this reads

16πG5〈Tµν〉 =k(4) (4uµuν + ηµν) + 4π(4)
µν

〈Jµ〉 =
1√
−g(0)

δ

δA
(0)
µ

Sren[A
(0)
µ , g(0)

µν ] = − 1

8πG5
ηρµa(2)

ρ , (3.9)

where a barred superscript (n) indicates the n’th term in a large r (near boundary) expan-

sion of the appropriate expression. Working in the Landau frame also requires that

j(4,n)
µ = 0 k(4,n) = 0 c(2,n) = 0 (3.10)

for n ≥ 1. If (3.10) is not satisfied this would correspond to a small shift in the local

velocity fields, the energy and charge densities.

The chemical potential µ of the boundary theory is given by the difference between

the value of the temporal component of the gauge field at the horizon and its value at

the boundary (of the unboosted black hole solution). The temperature T of the boundary

theory can be obtained from the Hawking temperature,

µ = At(r+) − At(∞) =

√
3Q

r2
+

, T =
r+

2π

(
2 −

(
r−
r+

)2

−
(

r−
r+

)4
)

. (3.11)

We have defined r+ to be the larger of the two positive roots of f(r) and r− the smaller of

its two positive roots (the other four roots of f(r) are given by −r+, −r− and ±i
√

r2
+ + r2

−).

By manipulating (3.11) and (3.3) one can obtain (2.20). Note that an extremal black hole

is obtained when r+ = r−. In the boundary theory this corresponds to the limit T → 0,
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while keeping µ 6= 0, as can be seen from (2.20c). In [40] it was shown that in this limit,

even though the temperature vanishes, the mean free path is not necessarily vanishing

and one might expect a hydrodynamic description of the theory in this regime. However,

following [41], it was also argued that this regime of the theory is likely to be unstable.

We will also see shortly that, from a bulk point of view, our perturbative analysis breaks

down when the black hole is close to extremality. Hence, in what follows we will assume

that µ/T ≪ 1.

It is now straightforward to derive the energy density ǫ in (2.19a) and the charge

density ρ in (2.19b) by inserting (3.8) into (3.9) and using

16πG5 =
8Vol5
πN2

, (3.12)

where Vol5 = π3 for the N = 4 theory.

4. The derivative expansion

If uµ, Q and b are constants then (3.8) is a solution to (3.5). As emphasized earlier, if we

allow the fields uµ, b and Q to vary with the space-time coordinates then (3.8) is no longer

a solution to the equations of motion. However, if we allow uµ, b and Q to vary slowly in

the transverse coordinates then we can construct a solution perturbatively. At zero order

we have the solution (3.8). At first order, we look for a correction to (3.8), expressed in

terms of functions k(1)(r), h(1)(r), π
(1)
µν (r), j

(1)
α (r), S(1)(r), a

(1)
ν (r) and c(1)(r) which depend

on one derivative of the hydrodynamic fields. That is, we insert (3.6) and (3.7), with k(r) =

k(0)(r) + k(1)(r), h(r) = h(0)(r) + h(1)(r), etc., into the Einstein-Maxwell equations (3.5),

omitting all terms which contain two or more derivatives of the charge, temperature or

velocity fields. These equations will of course be linear in k(1)(r), h(1)(r), etc. If these

equations can be solved then the solution will give us the metric and gauge field of a

charged AdS5 black hole, where the charge, mass and boost parameters slowly vary in the

transverse coordinates, valid to first order in gradients of these parameters. With the first

order solutions at hand, this procedure may be repeated to obtain k(2)(r), h(2)(r), etc.—a

solution to the Einstein-Maxwell equations involving two derivatives of the hydrodynamic

fields. Up to some caveats which we discuss below, one may, in principle, carry out this

algorithm to an arbitrary order in the derivative expansion.

It is straightforward, but tedious to compute the order n Einstein-Maxwell equations.

A method developed in [14] which simplifies this task is to consider the equations of motion

in the neighborhood of a point xµ
0 but at arbitrary radial coordinate r. The hydrodynamic

fields are expanded in a Taylor series around xµ
0 up to order n. Thus, no information is

lost regarding an order n derivative expansion. Once a solution is obtained around xµ
0 it

can be uniquely extended to the entire manifold. The interested reader is referred to [14]

for an extended discussion of this method. As in [14] we choose xµ
0 = 0. At this point we

can also choose uµ = (1, 0, 0, 0), b = b0 and Q = Q0.

– 10 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
5

After implementing this technique, we find that in the neighborhood of xµ
0 the Einstein-

Maxwell equations (3.5) take the form

∂r

(
r5f(r)∂rπ

(n)
ij

)
= P

(n)
ij (r) (4.1a)

∂r

(
r5∂rj

(n)
i (r) + 2

√
3Q0a

(n)
i (r)

)
= J

(n)
i (r) (4.1b)

3∂rS
(n)(r) − 3

2
r−1∂r

(
r2∂rh

(n)(r)
)

= S(n)(r) (4.1c)

∂r

(
r4k(n)(r)

)
+ 8r3S(n)(r) + b−4

0

(
1 − 3r4b4

0

)
∂rh

(n)(r) − 2√
3
Q0∂rc

(n) = K(n)(r) , (4.1d)

and

∂r

(
r3∂rc

(n)
)
− 2

√
3Q0∂rS

(n) + 3
√

3Q0∂rh
(n) = C(n)(r) (4.2a)

∂r

(
r3f(r)∂ra

(n)
i (r) + 2

√
3LQ0j

(n)
i (r)

)
= A

(n)
i (r) (4.2b)

at order n in a derivative expansion. In addition, there are four constraint equations which

restrict the allowed values of Q(xα), b(xα) and uµ(xα) and reduce to the conservation

equations (2.1) when expanded to order n.

While the “kinetic” terms for the unknown fields k(n)(r), h(n)(r), etc are identical for

all n, the source terms, on the right hand side of (4.1) and (4.2) must be determined at

every order. We obtain the explicit form of the n = 1 and n = 2 sources in the next

section. Once the sources are known, it is simply a manner of integrating the equations of

motion (4.1) and (4.2) to obtain a solution at order n.

For the tensor modes π
(n)
µν we find

π(n)
µν (r) = −

∫ ∞

r

∫ x
r+

P
(n)
µν (x′)dx′

x5f(x)
dx , (4.3)

where π
(n)
µν and P

(n)
µν reduce to π

(n)
ij and P

(n)
ij of (4.1a) when expanded around xµ

0 = 0.

The boundary conditions we have imposed are that the boundary metric remain flat, i.e.,

the bulk metric is not deformed near the boundary, and that all singularities are veiled

behind the outer horizon roughly located at r = r+. The upper limit of the outer integral

in (4.3) ensures that the former boundary condition is satisfied. The lower limit of the

inner integral in (4.3) ensures that the outer integrand remains finite at r = r+ where

f(r+) = 0. As is standard for charged black holes, once the solution (3.8) is perturbed, the

inner horizon, located at r ∼ r−, becomes singular (see for example [42]). As long as this

singularity is located behind the outer horizon, we should not worry about this. However,

since the outer horizon is no longer located precisely at r = r+, and since we do not want

the fluctuations of the horizon to reveal the singularity at r = r−, we require that r+ ≫ r−.

More details about the geometry of the perturbed horizon (in the uncharged case) can be

found in [33]

In order to determine the energy momentum tensor of the boundary theory, we do not

need πµν(r) but only its fourth order term in a near boundary expansion π
(4)
µν , c.f., (3.9).
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From (4.3) one finds

4π(4)
µν = lim

r→∞

[
2∑

m=0

(−1)m
rm+1∂m

r Pµν(r)

(m + 1)!
−
∫ r

r+

Pµν(x)dx

]
. (4.4)

Thus, if it is only the order n boundary theory energy momentum tensor we are looking

for, π
(4,n)
µν , we are excused from doing the double integral in (4.3).

Before considering the integral solutions for the scalar modes, k(n)(r), S(n)(r), c(n)(r)

and h(n)(r), we recall that we have not completely fixed our gauge for the metric. As

in [18], we choose the gauge h(r) = 1 since it allows us to easily decouple k(n)(r), S(n)(r)

and c(n)(r). Other possible gauges are S(r) = 1 and S(r) = −3/2h(r), which were used

in [14, 33]. After choosing the gauge h(r) = 1, we find

S(n)(r) = −1

3

∫ ∞

r
S(n)(x)dx

c(n)(r) = −
∫ ∞

r
x−3

∫ x

r+

[
C(n)(x′) +

2√
3
QS(n)(x′)

]
dx′dx + c0r

−2

k(n)(r) = r−4

∫ r

r+

[
K(n)(x) − 8r3S(n)(x) +

2√
3
Q∂rc

(n)(x)

]
dx + C0r

−4 , (4.5)

where we required again that the boundary metric is flat and that there are no singularities

for r ≥ r+. The sources S, K and C reduce to the ones in (4.1c), (4.1d) and (4.2a) when

expanded around xµ
0 . The extra integration constants C0 and c0 are fixed by the Landau

gauge (3.10). As we discussed in sections 2 and 3, the charge density and energy density

were defined relative to the rest frame of a fluid element. This definition was a result of

our choice of frame. In the gravity dual this choice manifests itself as a choice of adding

an extra zero momentum quasi-normal mode to c(n)(r) and k(n)(r). Choosing the Landau

frame implies choosing c(2,n) = 0 and k(4,n) = 0 in the bulk theory for n ≥ 1. Thus, we

choose values for c0 and C0 such that the second term in a near boundary expansion of

c(n)(r) and the fourth order term in a near boundary expansion of k(n)(r) vanish for n ≥ 1.

We refer the reader to [14, 18] for details.

For the vector equations we find

(
a

(n)
ν (r)

j
(n)
ν (r)

)
=


−H(r)

∫ ∞

r
H−1(x)




R

x

r+
Aν(x′)dx′

x3f(x)

x−5
∫ x
r+

Jν(x
′)dx′


 dx


+CνH1(r)+DνH2(r) (4.6)

after extending the solution to the entire manifold. The Cν ’s are chosen so that the r−4

terms in a near boundary expansion of j(r)ν vanish — again a result of our working in the

Landau frame. The coefficients Dν are chosen so that a
(n)
µ (r) and j

(n)
ν (r) will be finite at the

horizon. The columns of the matrix H(r) are given by the solutions to the homogeneous

version of the vector equations, H1(r) and H2(r). Its explicit form and a detailed discussion

of the solution (4.6) and its derivation can be found in appendix A. As was the case for the

tensor modes, in order to compute the order n contribution to the R-charge current we do

not need the full solution a
(n)
ν (r) but only its r2 coefficient in a near boundary expansion.
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From (4.6) we find

a(2)
ν = lim

r→∞

[
1

2

(
rAν(r) −

∫ r

r+

Aν(x)dx

)]
−

√
3b4QCν −

√
3

4
b4QDν (4.7)

where Cν and Dν are given by

4Cν = − lim
r→∞

[
2∑

m=0

(−1)mrm+1

(m + 1)!
∂m

r Jν(r) −
∫ r

r+

Jν(x)dx

]
(4.8)

and

Dν = −
√

3Q

∫ ∞

r+

Aν(x)

x2
dx − 1

b4

∫ ∞

r+

Jν(x)

x4
dx + Q2

∫ ∞

r+

Jν(x)

x6
dx . (4.9)

One caveat in the previous analysis is that we have assumed that a solution exists,

i.e., that all the integrals are well defined. However, if the sources are too divergent near

the boundary we would find that the outer integrals in (4.3), (4.5) and (4.6) do not exist.

This would imply that one could not impose the boundary condition that the boundary

metric remains flat. By inspection, one can check that the order n sources for the metric

and gauge field will not deform the boundary theory as long as

P(n)
µν (r) = O(r2), S(n)(r) = O(r−2), K(n)(r) = O(r2)

J(n)
ν (r) = O(r2), C(n)(r) = O(r0), A(n)

ν (r) = O(r0). (4.10)

We have checked that this is the case up to order n = 2.

4.1 First order expansion

It remains to evaluate the various sources, Pµν , S, K, Jν , C, and Aν , order by order in a

derivative expansion. By direct computation, the first order sources are given by

P(1)
µν (r) = −3r2σµν (4.11a)

S(1)(r) = 0 (4.11b)

K(1)(r) = 2r2∂µuµ (4.11c)

J(1)
ν (r) = 3r2uµ∂µuν (4.11d)

C(1)(r) = 0 (4.11e)

A(1)
ν (r) = −

√
3

r2
(Pα

ν ∂αQ + Quµ∂µuν) +
4
√

3Q2

r5
ℓν , (4.11f)

when restricted to the neighborhood of xµ
0 . After verifying that (4.10) holds, we can

use (4.7) to compute the r−2 coefficient of a
(1)
ν (r). Before doing so, we make a few remarks

on the index structure of the vector modes. Under the conservation law (2.1), the source

terms for the vectors can be rewritten as

J(1)
ν (r) =JDu(r)uµ∂µuν

A(1)
ν (r) =ADu(r)uµ∂µuν + Aκ(r)Pα

ν ∂α
µ

T
+ AΩ(r) ℓν , (4.12)
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where

ADu(r) =
2
√

3Q

r2
JDu(r) = 3r2 (4.13)

AΩ(r) =
4
√

3Q2

r5
Aκ(r) = − π2T 3r4

+b4

r2
(
1 + µ2

6r2
+

) . (4.14)

Since the differential equations (4.1) and (4.2) are linear differential equations in the radial

variable r, the index structure of the sources in the transverse dimensions will carry through

to the gauge field a
(1)
ν (r). Thus, to first order in the derivative expansion, we already see

from (4.12) that a
(2)
ν may be decomposed into terms proportional to ℓν , Pα

ν ∂α
µ
T and uα∂αuν .

Since a
(2)
ν is proportional to the boundary current 〈Jµ〉 via (3.9), and the boundary current

is Weyl invariant, this implies that the non-Weyl invariant term uα∂αuν can not contribute

to a
(2)
ν . Indeed, from (4.7) we find

a(2)
ν = −

√
3Quν +

1

2
π2r7

+T 3b8∂ν
µ

T
−

√
3

2
Q2b4ℓν . (4.15)

Using (3.9) we see that the expectation value of the R-charge current 〈Jµ〉 takes the

form (2.16) with Ω and κ as in (2.21c) and (2.21b). The energy momentum tensor can

be evaluated in a similar manner. We compute π
(4)
µν from (4.4), and from (3.9) we obtain

〈Tµν〉. Not surprisingly, it takes the form (2.17) with a shear viscosity η as in (2.21a).

Had we been content with the first derivative corrections to the energy momentum

tensor and current, we could have stopped here. Since we will be computing also the second

order corrections, we need the full gravity solution to first order in a derivative expansion.

Almost all the sources for the scalar terms in the metric are trivial, and integrating them

gives us

S(1)(r) = 0 c(1)(r) = 0 k(1)(r) =
2

3r
∂µuµ . (4.16)

For the tensor modes we find

π(1)
µν (r) = F (r)σµν , (4.17)

where

F (r) =
1

2
b4
∑

x

(r3
+ − x3) ln(r − x)

3b4x4 − 1
=

1

r
− r3

+

4r4
+ O(r−5) (4.18)

and the sum runs over all six roots of f(r) which was defined in (3.3), i.e. ±r+,±r−

and ±i
√

r2
+ + r2

−. Note that F (r) depends implicitly on the transverse coordinates. The

expressions for the vector components of the metric are somewhat more involved. By

explicitly carrying out the integral in (4.6) we find

j(1)
ν (r) = − 1

r
uµ∂µuν − b4Q3

2r6
ℓν + jκ(r)∂ν

µ

T

a(1)
ν (r) =aκ(r)∂ν

µ

T
−

√
3Q2b4

2r2
ℓν , (4.19)
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where aκ(r) and jκ(r) are given by rather long expressions which we avoid writing out

explicitly here and which are given in appendix B, equations (B.4) and (B.5). Their

leading order behavior is given by

aκ(r) =
π2r7

+T 3b8

2r2
+ O(r−3) ,

jκ(r) = O(r−6) . (4.20)

4.2 Second order

At second order we find that the scalar sources for the Einstein-Maxwell equations (4.2)

and (4.1) satisfy (4.10) as required. The sources for the tensor modes are given by

P(2)
µν = PτπΣ(0)

µν +Pλ1Σ(1)
µν +Pλ2Σ(2)

µν +Pλ3Σ(3)
µν +Pλ4Σ(4)

µν +Pλ5Σ(5)
µν +Pλ̃1Σ̃(1)

µν +Pλ̃2Σ̃(2)
µν (4.21)

with

Pτπ (r) = r −
(
r3F (r)

)′ − r3F ′(r) (4.22a)

Pλ1(r) = r − 3r2F (r) − (r3 − r3
+)F ′(r) (4.22b)

Pλ2(r) = 2
(
r −

(
r3F (r)

)′ − r3F ′(r)
)
− 4r (4.22c)

Pλ3(r) = 4r

(
1 +

1

b4r4
+

2Q2

r6

)
+

4Q4b4

r3

(
−3b4 +

3

r4
− 12Q2b4

r6

)
(4.22d)

Pλ4(r) = −3

2
T

(πT )2 + r2 − 2
3πTr

π (r2 + (πT )2)

+

(
πT 3

4r2
+

3r2

4π3T

)(
ln

(
r2 + (πT )2

(r + πT )2

)
− 2 arctan

( r

πT

)
+ π

)
+ O (µ) (4.22e)

Pλ5(r) = −2
(
r3jκ(r)

)′
(4.22f)

Pλ̃1(r) = −
√

3Q2b8T 3π2r4
+(

1 + µ2

6r2
+

)
r4

+

√
3Q2b4

r6

(
12Q2

r
aκ(r) − 2r6f(r)aκ′(r)

)
(4.22g)

Pλ̃2(r) = −6Q3b4

r4
. (4.22h)

The coefficients λi and τπ of the energy momentum tensor can be computed by inserting the

corresponding sources of (4.22) into (4.4) and using (3.9). The results are listed in (2.23).

The full expressions for Pλ4(r) can be found in (B.2a).

The sources for the vector modes are given by

A(2)
ν =Aξ1Ξ(1)

ν + Aξ2Ξ(2)
ν + Aξ3Ξ(3)

ν + Aξ4Ξ(4)
ν + Aξ̃1Ξ̃(1)

ν

J(2)
ν =Jξ1Ξ(1)

ν + Jξ2Ξ(2)
ν + Jξ3Ξ(3)

ν + Jξ4Ξ(4)
ν + Jξ̃1Ξ̃(1)

ν , (4.23)
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where

Aξ1(r) = raκ′(r) − T 3b8π2r7
+F ′(r) (4.24a)

Aξ2(r) =
π2r7

+T 3b8

r2


1 − 4r+µ2

3r3
(
1 + µ2

6r2
+

)


−

(
r2f(r)aκ′(r)

)′
(4.24b)

Aξ3(r) = 0 (4.24c)

Aξ4(r) =
4
√

3b5Q3

r5
− 2

√
3bQ

r3
(4.24d)

Aξ̃1(r) = −
√

3Q2

((
F (r)

r4

)′
+

b4

2r2
− b4F ′(r)

)
(4.24e)

and

Jξ1(r) =
3µr2

8π3T 2

(
π − 2 arctan

( r

πT

)
+ ln

(
r2 + π2T 2

(r + πT )2

))

−
(
3r5 + 4πTr4 + 7π2T 2r3 + 10π3T 3r2 + 6π4T 4r + 4π5T 5

)
µr

4π (r3 + πTr2 + π2T 2r + π3T 3)2
+ O

(
µ2
)

(4.25a)

Jξ2(r) = r2
(
6jκ(r) + 9rjκ′(r) + r2jκ′′(r)

)
(4.25b)

Jξ3(r) = −
(
r3 − r3

+

)
b3

r2f(r)
(4.25c)

Jξ4(r) = −2br (4.25d)

Jξ̃1(r) = −1

2
Q3b4

(
F ′(r)

r

)′
. (4.25e)

The full expression for Jξ1(r) can be found in (B.2b). The coefficients ξi and ξ̃1 in (2.23i)–

(2.23m) were computed from (4.24) and (4.25) with the help of (4.7) and (3.9).

5. Discussion

To summarize, on the gravity side our results show that one can extend the Reissner-

Nordström AdS5 black hole solutions to black holes for which the charge density varies with

the space-time coordinates. The field theory dual of this configuration is a conformal fluid

with a non vanishing chemical potential and non trivial R-charge current. The transport

coefficients of this fluid are listed in (2.19), (2.21), (2.23) and (B.1). Once the chemical

potential vanishes one obtains the transport coefficients calculated in [14 – 16] for the CFT

dual of an uncharged black hole.

At first order in the derivative expansion we have found a transport coefficient of the

R-charge current, Ω, associated with the vorticity ℓµ (see (2.7) and (2.21c)) which, as far as

we know, has not appeared in the literature so far. One can trace back the appearance of

this component to the Chern-Simons term in (3.1). If the Chern-Simons term were absent

from the Lagrangian, Ω would vanish. A similar statement can be made for the second

order transport coefficients ξ̃1, λ̃1 and λ̃2.
5

5Notice, however, that the presence of the Chern-Simons term is required by supersymmetry.
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Our result for the shear viscosity to entropy ratio agrees with (1.1). This observation

has already been made in [5, 23, 24] and seems to be a feature of any gauge theory with

a holographic dual. In light of the universality of η/s, it is natural to inquire if there are

other hydrodynamic quantities whose value is universal [44 – 46]. In [46] it was suggested

that the ratio of the electrical conductivity to the susceptibility of certain CFT’s might

have a universal value in the same sense as (1.1). In the µ → 0 limit our result for κ/χ

in (2.21b) is consistent with the prediction of [46]. In that context it is also interesting to

compare our full expression for κ/χ in (2.21b) to the one obtained from the results of [5],

where the chemical potential of a different U(1) subgroup of the SO(6) R-symmetry group

was turned on. As far as we can tell, the ratios are rather different. Also, the constant of

proportionality in the analogue of the Wiedemann-Franz law [47], in our case

(
4
3ǫ

ρT

)2
µ2κ

ηT
= 4π2, (5.1)

differs from the one obtained in [5] by a factor of two.

We have normalized all the second order transport coefficients (2.23) relative to the

second derivative of the energy density with respect to the temperature. This was done in

order to conform to [18] and in order to get rid of some multiplicative constants related to

the number of degrees of freedom of the gauge theory. Clearly, the expressions in (2.23)

are different from their µ = 0 counterparts. However, it is interesting to note that

4λ1 + λ2 = 2ητπ (5.2)

for any value of µ, and that this relation also holds, in the µ = 0 case, in more than d=4

transverse dimensions [18]. It would be nice to check if this relation remains valid even

when µ 6= 0 and d > 4, or in other theories with a holographic dual.

Another interesting transport coefficient is λ3 which vanishes when µ = 0 both at

strong and weak coupling [15]. When µ 6= 0 it does not vanish, at least not at strong

coupling. From a gravitational point of view, one reason for this difference is the Chern-

Simons term in (3.1). As discussed above, this term is responsible for the contributions

proportional to ℓµ in j
(1)
µ (r) and a

(1)
µ (r). These expressions contribute to the source Pλ3

µν(r)

via terms quadratic in j
(1)
µ (r) and a

(1)
µ (r). One can verify that this is the origin of the

second summand on the right hand side of (4.22d). However, even in the absence of the

Chern-Simons term λ3 would not vanish when µ 6= 0. Of course, the choice of basis in (2.18)

is not uniquely determined. it is always possible to redefine

Σ′
5 = Σ5 +

8µ
(
1 + µ2

6r2
+

)

π2b4r2
+T 3

Σ3 (5.3)

so that the coefficient of Σ3 vanishes both in the µ 6= 0 case and in the µ → 0 limit. Further

physical guidance would be needed in order to decide whether a certain choice of basis is

preferred over another.
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A. The vector modes’ equations of motion

In section 4 we have shown that the equations of motion for the perturbations of the metric

and gauge field (3.5) involve two vector modes j
(n)
µ (r) and a

(n)
µ (r) which are coupled,

∂r

(
r3f(r)∂ra(r) + 2

√
3Q0j(r)

)
= A(r)

∂r

(
r5∂rj(r) + 2

√
3Q0a(r)

)
= J(r). (A.1)

We have removed the superscript (n) specifying the order of the solution and the vector

subscript µ for clarity. In this section we show how to obtain the solution to these equations

for arbitrary sources A(r) and J(r). The result was already anticipated in (4.6).

We start by considering the homogeneous version of these equations. The four homo-

geneous solutions are given by

(
a(r)

j(r)

)
=

(
1

0

)
,

(
a(r)

j(r)

)
=

(
0

1

)
,

(
a(r)

j(r)

)
=

(
−

√
3Q0b40
r2

1
r4 − b4

0
Q2

0

r6

)
≡ H1(r) , (A.2a)

(
a(r)

j(r)

)
=

(
−P0

r2 + P2(r)
r2

∑
x α(x) ln |r2 − x2|

1
4b4

0 + P6(r)
r6 + 2

√
3Q0f(r)

∑
x α(x) ln |r2 − x2|

)
≡ H2(r) , (A.2b)

where we have introduced the following notation:

P0 =
27
√

3b16
0 Q5

0

4
(
−4 + 27b12

0 Q4
0

) , P2(r) = − 4

b4
0

(
r2 − 3

2
b4
0Q

2
0

)
,

r−6P6(r) =
r2 − 2

√
3P0Q0f(r)

P2(r)
, α(x) =

√
3b12

0 Q0(x
2 + 3b4

0Q
2
0)

8
(
−1 + 3x4b4

0

) (
−4 + 27b12

0 Q4
0

) (A.3)

and x runs over the roots of f(r) which we denote by ±r+, ±r− and ±i
√

r2
+ + r2

− with

r+ > r− > 0. The outer horizon of the unperturbed black hole is located at r = r+. The

two constant modes correspond to a deformation of the boundary, H1 is a zero momentum

quasi-normal mode corresponding to a shift in the boost parameters of the black brane,

and H2 is a solution which diverges at the horizons. In particular, at the outer horizon we

find

lim
r→r+

H2(r) =

( √
3Q0

2(2πTr2
+

)2
ln |r − r+| + O(r0

+)

O(r0
+)

)
. (A.4)

The rest of the solutions are finite at r = r+.

To solve the non-homogeneous equations we integrate (A.1) once,

∂ra(r) + 2
√

3LQ0
j(r)

r3f(r)
=

∫ r
A(x)dx

r3f(r)
(A.5a)

∂rj(r) + 2
√

3L3Q0r
−5a(r) = r−5

∫ r

J(x)dx. (A.5b)

For the moment we keep the lower limits of integration unspecified. The solutions to the

homogeneous version of (A.5) which are first order equations, can be obtained from linear
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combinations of (A.2). They are given by the columns of

H(r) =

(
P2(r)

r2 −P0

r2 + P2(r)
r2

∑
x α(x) ln |r2 − x2|

2
√

3Q0f(r) P6(r)
r6 + 2

√
3Q0f(r)

∑
x α(x) ln |r2 − x2|

)
. (A.6)

The overall multiplicative factor of the homogeneous solutions has been chosen so that

|H| = 1.

With the homogeneous solutions at hand, one can use the method of variation of

parameters to find a particular solution to the inhomogeneous first order equations (A.5).

This is given by

(
a(r)

j(r)

)
= −H(r)

∫

r
H−1(x)

( R

x

A(x′)dx′

x3f(x)

x−5
∫ x

J(x′)dx′

)
dx . (A.7)

We choose the integration constants by requiring that the metric is differentiable up to

and including the outer horizon and that there is no deformation of the boundary metric.

Since H is finite at the boundary, the latter requirement implies that we should set the

upper limit of the outer integral to infinity. We assume this integral exists, i.e.,

J(n)(r) = O(r2), A(n)(r) = O(r0). (A.8)

If (A.8) does not hold then there is no asymptotically AdS solution. As stated in the main

text, we have checked that (A.8) is satisfied up to second order in the derivative expansion.

The other requirement, that the metric is differentiable, implies that we should set the

lower limit of the inner integral to r+ and add an appropriate multiple of the homogeneous

solution H2. Indeed, once the lower limit of the inner integral is set to r = r+ then the outer

integrand in (A.7) will be finite at the horizon. Thus, the only terms which may diverge at

the horizon can arise from the logarithmic divergence in H multiplying the outer integral

in (A.7). Since

lim
r→r+


−H(r)

∫ ∞

r
H−1(x)




R

x

r+
A(x′)dx′

x3f(x)

x−5
∫ x
r+

J(x′)dx′


 dx


 =

=

(
1

0

)
×

√
3Q0

2(2πTr2
+)2

ln |r − r+|
∫ ∞

r+

(
2
√

3Q0

x3

∫ x

r+

A(x′)dx′ (A.9)

+
1

x5

(
4

b4
0

− 6Q2
0

x2

)∫ x

r+

J(x′)dx′
)

dx + O(r0
+),

then according to (A.4) one can get rid of the remaining logarithmic divergence by adding a

term proportional to H2(r) to our solution. We are still left with one integration constant:

the homogeneous solution H1 neither deforms the boundary nor diverges at the horizon, so

we may add it to (A.7) without spoiling the boundary conditions. As we have mentioned

earlier, H1 is the homogeneous solution associated with a shift in the boost parameters.

From the point of view of the boundary theory, this corresponds to an ambiguity in the

definition of the velocity field which is fixed by going to the Landau frame. Fixing the
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Landau gauge in the boundary theory corresponds to setting the fourth order coefficient of

a near boundary expansion of j(n)(r) to zero, cf. (3.10). This precisely fixes the remaining

integration constant. Our final result for the solution to (A.1) is then
(

a(r)

j(r)

)
= −H(r)

∫ ∞

r
H−1(x)




R

x

r+
A(x′)dx′

x3f(x)

x−5
∫ x
r+

J(x′)dx′


 dx + CH1(r) + DH2(r) , (A.10)

where C is set to

C = − lim
r→∞

[
1

4

(
2∑

m=0

(−1)mrm+1

(m + 1)!
∂m

r J(r) −
∫ r

r+

J(x)dx

)

+
9
√

3Q0

4r2



∑

m=0,1

(−1)mrm+1

32m+1
∂m

r A(r) −
∫ r

r+

A(x)dx



]

(A.11)

by requiring that j(4) = 0 and

D = −
∫ ∞

r+

(
2
√

3Q0

x3

∫ x

r+

A(x′)dx′ +
1

x5

(
4

b4
0

− 6Q2
0

x2

)∫ x

r+

J(x′)dx′
)

dx (A.12)

by requiring that the metric is differentiable at the outer horizon (notice that this does

not interfere with demanding j(4) = 0 since H2 does not contain any term proportional to

r−4). We point out that since A = O(r0), c.f. (A.8), the second line in (A.11) will always

evaluate to zero. Also, in practice it is efficient to replace the double integrals in (A.12)

with single integrals. This can be done by integrating by parts. Using (A.8), we obtain

D = −
√

3Q0

∫ ∞

r+

A(x)

x2
dx − 1

b4
0

∫ ∞

r+

J(x)

x4
dx + Q2

0

∫ ∞

r+

J(x)

x6
dx . (A.13)

Equation (4.7) in the main text was obtained by expanding (A.10) in a series expansion

near the boundary, using (A.8) and extending the solution from the neighborhood of xµ
0 to

R3,1.

B. Long expressions

In certain places in the main text the expressions we have found were somewhat long. In

this appendix we have collected the expressions which were omitted.

The full expressions for the transport coefficients λ4 and ξ1 whose expansion (in µ
T )

appeared in section 2, equations (2.23e) and (2.23i), are given by

λ4

c
=

(
9r16

− +36r2
+r14

− +372r4
+r12

− + 990r6
+r10

− +1523r8
+r8

−
)
T 4

3456r4
+

(
1 + µ2

6r2
+

)2 (
2r2

− + r2
+

)2 (
r4
+ + r2

+r2
− + r4

−
)3

+

(
1438r10

+ r6
− + 696r12

+ r4
− + 136r14

+ r2
−−16r16

+

)
T 4

3456r4
+

(
1 + µ2

6r2
+

)2 (
2r2

− + r2
+

)2 (
r4
+ + r2

+r2
− + r4

−
)3

−
(
r4
− + r2

+r2
− − 2r4

+

)6 (
1 + µ2

6r2
+

)
ln
(

r2
+
−r2

−

r2
−

+2r2
+

)

1152π4r6
+

(
2r2

− + r2
+

)3 (
r4
− + r2

+r2
− + r4

+

) (
r4
− + r2

+r2
− + 2r4

+

)2 (B.1a)
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and

8π2

N2
ξ1 =

r+

(
r2
− + r2

+

) (
13r4

− + 13r2
+r2

− + 10r4
+

) (
r5
− + r2

+r3
− − 2r4

+r−
)2

32π
(
r4
− + r2

+r2
− + r4

+

)3 (
r4
− + r2

+r2
− + 2r4

+

)

−
(
r4
− + r2

+r2
− − 2r4

+

)3

8πr+

(
r4
− + r2

+r2
− + r4

+

) (
2r6

− + 3r2
+r4

− + 5r4
+r2

− + 2r6
+

) ln

(
r2
+ − r2

−
2r2

+ + r2
−

)
.

(B.1b)

The source terms missing from (4.22e) and (4.25a) in section 4 are

Pλ4 = −

√
r2
− + r2

+

(
r4
− + r2

+r2
− − 2r4

+

)3

12
√

3πr−r2
+

(
r10
− + 3r2

+r8
− + 6r4

+r6
− + 7r6

+r4
− + 5r8

+r2
− + 2r10

+

)
(
r3jκ(∂β)(r)

)′

+

√
r2
− + r2

+

(
r4
− + r2

+r2
− − 2r4

+

)3

12
√

3πr−r2
+

(
r10
− + 3r2

+r8
− + 6r4

+r6
− + 7r6

+r4
− + 5r8

+r2
− + 2r10

+

)
(
r3jκ(r)

)′

− 5
(
r4
− + r2

+r2
− − 2r4

+

)3

12πr+

(
r8
− + 2r2

+r6
− + 4r4

+r4
− + 3r6

+r2
− + 2r8

+

)
(

aκ(r)

r

)′

+ 2
√

3r−r+

√
r2
− + r2

+ (aκ(r)jκ(r))′ −
(
r4
− + r2

+r2
− − 2r4

+

)3

8πr2
+

(
r4
− + r2

+r2
− + r4

+

)2 aκ′(r)

+

√
3
(
r4
− + r2

+r2
− − 2r4

+

)3

4πr+

(
r8
− + 2r2

+r6
− + 4r4

+r4
− + 3r6

+r2
− + 2r8

+

)
(
r3jκ(∂Q)(r)

)′

−
(
r4
− + r2

+r2
− − 2r4

+

)3

4πr+

(
r8
− + 2r2

+r6
− + 4r4

+r4
− + 3r6

+r2
− + 2r8

+

) aκ(r)

r2
(B.2a)

and

Jξ1(r) =

(
(
r5F ′(r)jκ(r)

)′
(B.2b)

−
π
√

r2
++r2

−r−(r−r+)2r6
+

(
3r+

(
r2+2r+r+3r2

+

)
r2+(2r+r+)

(
r4
−+r2

+r2
−+4r4

+

))
T 2

√
3r8
(
r8
−+2r2

+r6
−+4r4

+r4
−+3r6

+r2
−+2r8

+

)
f(r)2

)
,

where we have defined

∂µjκ(r) = jκ(∂β)(r)uα∂αuµ + jκ(∂Q)(r)∂µQ . (B.3)

Finally, in (4.19) we have parameterized the first order bulk solutions for the vector
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modes by two functions aκ(r) and jκ(r). The first, aκ(r), is given by

aκ(r) =

√
r2
−+r2

+

(
2r4

−+3r2
+r2

−+2r4
+

) (
r2
+−r2

−
)3

4r+

(
2r2

−+r2
+

)3 (
r4
−+r2

+r2
−+2r4

+

) − 3r2
−r+

(
r6
−+2r2

+r4
−−r4

+r2
−−2r6

+

)

2πr
(
2r2

−+r2
+

)2 (
r4
−+r2

+r2
−+2r4

+

)

+
27r2

+

(
r2
−+r2

+

)2 (
r4
−+r2

+r2
−−2r4

+

)
r4
−

16r2π
(
2r6

−+3r2
+r4

−+3r4
+r2

−+r6
+

)2

+
3r+

(
r2
−−r2

+

)3√
r2
−+r2

+

(
2r6

−+5r2
+r4

−+5r4
+r2

−+2r6
+

)
r2
−

8r2
(
2r2

−+r2
+

)3 (
r8
−+2r2

+r6
−+4r4

+r4
−+3r6

+r2
−+2r8

+

)

+

( (
r2
−−r2

+

)3 (
2r6

−+5r2
+r4

−+5r4
+r2

−+2r6
+

)

2πr+

√
r2
−+r2

+

(
2r2

−+r2
+

)3 (
r4
−+r2

+r2
−+2r4

+

)

− 3r2
−r+

(
r2
−−r2

+

)3 (
r2
−+r2

+

)3/2 (
2r4

−+3r2
+r2

−+2r4
+

)

4πr2
(
2r2

−+r2
+

)3 (
r8
−+2r2

+r6
−+4r4

+r4
−+3r6

+r2
−+2r8

+

)

)
arctan


 r√

r2
−+r2

+




+

(
r−
(
r2
−+r+r−+r2

+

) (
r3
−−r+r2

−+2r2
+r−−2r3

+

)3

4πr2
+

(
2r2

−+r2
+

)3 (
r4
−+r2

+r2
−+2r4

+

)

− 3r3
−
(
r2
−+r2

+

) (
r3
−−r+r2

−+2r2
+r−−2r3

+

)3

8πr2
(
2r2

−+r2
+

)3 (
r6
−−r+r5

−+2r2
+r4

−−r3
+r3

−+3r4
+r2

−−2r5
+r−+2r6

+

)

)
ln(r−r−)

+

(
r−
(
r2
−−r+r−+r2

+

) (
r3
−+r+r2

−+2r2
+r−+2r3

+

)3

4πr2
+

(
2r2

−+r2
+

)3 (
r4
−+r2

+r2
−+2r4

+

)

− 3r3
−
(
r2
−+r2

+

) (
r3
−+r+r2

−+2r2
+r−+2r3

+

)3

8πr2
(
2r2

−+r2
+

)3 (
r6
−+r+r5

−+2r2
+r4

−+r3
+r3

−+3r4
+r2

−+2r5
+r−+2r6

+

)

)
ln(r+r−)

+

(
3r2

−r2
+

(
r2
−+r2

+

)

4πr2
(
r4
−+r2

+r2
−+r4

+

)− 1

2π

)
ln(r+r+) (B.4)

+

(
3r2

−
(
r2
−+r2

+

)2 (
r2
−−r2

+

)3

8πr2
(
2r2

−+r2
+

)3 (
r4
−+r2

+r2
−+r4

+

)+

(
r2
+−r2

−
)3 (

r2
−+r2

+

)

4πr2
+

(
2r2

−+r2
+

)3

)
ln
(
r2+r2

−+r2
+

)

and jκ(r) can be determined from aκ(r) through the equation of motion,

jκ(r) =

(
r4
− + r2

+r2
− − 2r4

+

)3 (
r
(
r4
− + r2

+r2
− + 2r4

+

)
− 2r+

(
r4
− + r2

+r2
− + r4

+

))

16
√

3πrr−r3
+

√
r2
− + r2

+

(
r4
− + r2

+r2
− + r4

+

)2 (
r4
− + r2

+r2
− + 2r4

+

)

−
(
r2
− − r2

) (
r2
+ − r2

) (
r2 + r2

− + r2
+

)

2
√

3r3r−r+

√
r2
− + r2

+

aκ′(r). (B.5)
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